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ABSTRACT
We focus on the composition of teams of experts that collectively
cover a set of required skills based on their historical collabora-
tion network and expertise. Prior works are primarily based on the
shortest path between experts on the expert collaboration network,
and suffer from three major shortcomings: (1) they are computa-
tionally expensive due to the complexity of finding paths on large
network structures; (2) they use a small portion of the entire histor-
ical collaboration network to reduce the search space; hence, may
form sub-optimal teams; and, (3) they fall short in sparse networks
where the majority of the experts have only participated in a few
teams in the past. Instead of forming a large network of experts,
we propose to learn relationships among experts and skills through
a variational Bayes neural architecture wherein: i) we consider
all past team compositions as training instances to predict future
teams; ii) we bring scalability for large networks of experts due to
the neural architecture; and, iii) we address sparsity by incorporat-
ing uncertainty on the neural network’s parameters which yields
a richer representation and more accurate team composition. We
empirically demonstrate how our proposed model outperforms the
state-of-the-art approaches in terms of effectiveness and efficiency
based on a large DBLP dataset.
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1 INTRODUCTION
There has been increasing interest in the problem of forming a team
of experts from an expert network. Forming a team of experts was
first introduced in Lappas et al. [7] where the authors proposed
optimization functions to measure the communication cost of a
team. More recent works on the team formation problem focus
on addressing other objectives, e.g., personnel cost and expertise
level of the experts, in addition to communication costs, which
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turns the problem into a multi-objective optimization problem. For
instance, Kargar et al. [5] propose to optimize communication cost
and personnel cost when the project has a certain budget with
known salaries of the team members. Anagnostopoulos et al. [2]
introduce the problem of team formation with outsourcing in which
tasks arrive in realtime and therefore, neither the number nor the
composition of tasks are known a priori. The goal of such work is to
minimize the overall cost paid for hiring and outsourcing. Rahman
et al. [9] also study the problem of forming groups of crowdworkers
and propose an optimization model for task assignment. However,
unlike [2], Rahman et al. [9] take communication costs among
crowd workers into account and use the diameter and the sum of
distances to measure communication cost.

Nevertheless, existing works fall short with respect to scalability,
since the proposed solutions are based on the graph representation
of the expert network, in one way or another, and optimization is
performed by computationally expensive search methods on the
graph. Such methods define collaboration among team members
when there is a direct or indirect past collaboration between the
experts and optimization happens for a team based on, e.g., the
diameter of the subgraph. These methods essentially rely on the
computation of shortest path between all pairs of experts within
the network. This is computationally prohibitive for large networks.
Furthermore, expert networks are often dynamic as collaborations
happen in real-time. In such cases, the updates as a result of new
collaborations leads to frequent changes in shortest paths, which
requires expensive recalculation of indexed shortest paths for all
pairs of experts. Although advanced shortest path indexing tech-
niques (such as the one by Akiba et al. [1]) provides fast calculation
of proximity functions, the output teams are still sub-optimal and
lack accuracy as well as coverage for the given required skills based
on the heuristic nature of the solution.

We focus on finding optimal groups of experts, such as a group of
co-authors, that satisfy two main criteria: (1) maximal coverage for
a set of required skills, e.g., {deep learning, computer vision}, and (2)
effective collaboration history among team members, e.g., past joint
publications. We propose to learn feature representations over a set
of teams of experts using a variational Bayesian neural architecture1.
Instead of learning representations over the expert network, we
consider each observed team from past collaborations over a set of
skills as a training instance. Unlike previous approaches, where the
search for the best team is performed over the graph representation
of the expert network, we search for variational distributions of
experts and skills in the context of a team whose expectation can be
1Codebase available at http://anonymous.4open.science/ r/b8584256-b23a-42a1-8e8b-
b901826c475c/
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Figure 1: Variational Baysian neural architecture for S𝑝 → E𝑜 .
efficiently approximatedwith variational posterior to draw probable
teams, which are more effective and efficient compared to graph-
based methods.

To the best of out knowledge, Sapienza et al. [11] is the only
work that uses a neural architecture to address the team formation
problem. However, this work employs a plain (non-variational)
autoencoder neural network, which has been shown to be prone to
overfitting and is not able to correctly assess the uncertainty in the
training data [3]. This is especially visible, when there is sparsity
in the training data where only a few teams have been observed in
the past for a given set of skills. Our proposed model shows notable
effectiveness and efficiency improvements when evaluated over the
DBLP dataset against the state-of-the-art neural and graph-based
methods.

2 TEAM LEARNING
Given a set of required skills to form a team of experts, we em-
ploy a variational Bayesian neural network to form the optimal
team. We introduce uncertainty on the neural network parameters
(weights) and subsequently in the final predictions using varia-
tional Bayesian neural architecture, which not only yields a better
regularisation via probabilistic weights, but also leads to a richer
representation and more accurate predictions [3]. Despite wide-
spread use in other domains, such as language modeling [12], to
the best of our knowledge, variational neural networks have not
yet been used for team formation. We show that variational neural
networks are well-suited and a closer proxy for finding effective
teams.

We consider the generative process similar to the deep latent
Gaussian model with layers of latent variables [10]. Let S = {S𝑖 }
and E = {E 𝑗 } be the sets of skills and experts, respectively, (s, e) is
a team of experts e ⊆ E; e ≠ ∅, which has been formed with respect
to skills s ⊆ S; s ≠ ∅, and T = {(s, e)} indexes all teams. Our task
is to learn 𝑓 : P(S) → P(E), a mapping function of parameters 𝜽
from skills powerset to experts powerset, such that 𝑓 (s;𝜽 ) = e.

2.1 Variational Inference
We aim at optimizing the maximum a posteriori of 𝜽 in 𝑓 (·, 𝜽 ),
i.e., 𝑝 (𝜽 |T ) where 𝑓 is a multi-layer variational neural network,
T is the set of teams whose elements (s, e) consist of an input
skill subset s and a target expert subset e, which are assumed to
be drawn independently from a joint distribution 𝑝 (s, e), and 𝜽 are
real-valued parameters, or weights. By Bayes theorem,

𝑝 (𝜽 |T ) ∝ 𝑝 (T |𝜽 )𝑝 (𝜽 ) where 𝑝 (T |𝜽 ) =
∏

(s,e) ∈T
𝑝 (e|s, 𝜽 ) (1)

and 𝑝 (𝜽 ) is the prior probability of weights.Maximizing 𝑝 (T |𝜽 )𝑝 (𝜽 )
gives the maximum a posteriori estimate of 𝜽 . The true prior prob-
ability of weights 𝑝 (𝜽 ), however, cannot be calculated analytically
or efficiently sampled, and as such, we approximate it by a more
tractable distribution 𝑞(𝜽 |𝝁,𝝈) with multivariate diagonal Gauss-
ian distributionN(𝝁,𝝈2). The elements of 𝝈 are a diagonal covari-
ance matrix which means that weights 𝜽 are assumed to be uncor-
related. Unlike non-variational neural networks, where weights are
parameterized with real values (point estimate), herein each weight
𝜃𝑖∈𝜽 is drawn from a Gaussian distribution with a separate mean
𝜇𝑖 and variance 𝜎2

𝑖
(uncertainty in weights); hence, the number of

parameters to learn are doubled when training our Bayesian neural
network via variational inference.

2.2 Objective Function
To estimate the true posterior 𝑝 (𝜽 ) by 𝑞(𝜽 |𝝁,𝝈), we minimize the
Kullback-Leibler divergence between 𝑞 and 𝑝 with regard to the
Gaussian mean and variance vectors as suggested by Graves [4]:

KL(𝑞(𝜽 |𝝁,𝝈) | |𝑝 (𝜽 |T )) =
∫

𝑞(𝜽 |𝝁,𝝈) log[𝑞(𝜽 |𝝁,𝝈)
𝑝 (𝜽 |T ) ]d𝜽 (2)

= E𝑞 (𝜽 |𝝁,𝝈 ) log[
𝑞(𝜽 |𝝁,𝝈)

𝑝 (T |𝜽 )𝑝 (𝜽 ) 𝑝 (T )] (3)

= KL(𝑞(𝜽 |𝝁, 𝝈) | |𝑝 (𝜽 )) − E𝑞 (𝜽 |𝝁,𝝈 ) log 𝑝 (T |𝜽 )︸                                                      ︷︷                                                      ︸
variational free energy

+ log 𝑝 (T ) (4)

In order to minimize KL(𝑞(𝜽 |𝝁,𝝈) | |𝑝 (𝜽 |T )), we need to minimize
the first two terms in Eq. 4, known as variational free energy, given
that the log marginal likelihood log 𝑝 (T ) does not depend on 𝝁
and 𝝈 .

2.3 Model Architecture
We now describe the details of our proposed variational Bayesian
neural network. We predict a team of experts e ⊆ E for a given
skill subset s ⊆ S by a mapping function 𝑓 (s;𝜽 ) using a variational
neural network of one dense variational hidden layer h of size 𝑑 ,
without loss of generality to multiple hidden layers, with input
layer vS (s) and output layer vE (e):

h = 𝜋1 (𝜽1vS (s) + b1) (5)
vE (e) = 𝜋2 (𝜽2h + b2) (6)

𝜽 = 𝜽1 ∪ 𝜽2 ∪ b1 ∪ b2 (7)

where, 𝜋. is a nonlinear activation function, 𝜽∼N(𝝁,𝝈2) whose
means and variances are estimated by minimizing variational free
energy, vS (s) is the vector representation of the input skill subset
s, and vE (e) is the vector representation of output expert subset e
given a team (s, e)∈T .

To build the vector representations for skill subset s and ex-
pert subset e, we have employed two approaches: occurrence vec-
tor representation (𝑜) and pretrained dense vector representation
(𝑝). The occurrence vector representation of a given skill sub-
set s is a boolean vector of size |S|, i.e., vS𝑜

(s)∈{0, 1} |S | where
vS𝑜

(s) [𝑖] = 1 if S𝑖∈s and 0 otherwise. Likewise, vE𝑜
(e)∈{0, 1} |E |

where vE𝑜
(e) [ 𝑗] = 1 if E 𝑗∈e and 0 otherwise. In order to obtain

pretrained dense vector representations of skill and expert subsets,
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Figure 2: Distribution of teams (articles).
we adapt paragraph vectors by Le and Mikolov [8]. Specifically, we
consider each team (s, ·)∈T as a document and skills S𝑖∈s as the
document words. Using distributed memory model, we map skill
subsets into a real-valued embedding space of 𝑑S dimensions, i.e.,
vS𝑝

(s)∈R𝑑S . Likewise for vE𝑝
(e), considering each team (·, e)∈T

as a document and experts E 𝑗∈e as the document words, wemap ex-
pert subsets into a real-valued vectors of size 𝑑E , i.e., vE𝑝

(e)∈R𝑑E .
In Figure 1, we show our proposed model when pretrained dense
vector representation for skill subset (vS𝑝

(s)) and occurrence vec-
tor representation for expert subset (vE𝑜

(e)) have been used for
input and output layers, respectively.

As seen in Figure 1, given a skill subset s, we are able to form
a team of experts (s, e=?) by entering the pretrained vector repre-
sentation of the skill subset s in the input layer. Each parameter
(weight) 𝜃𝑖 ∈ 𝜽 in the neural network is then drawn from its es-
timated Gaussian distribution N(𝜇𝑖 , 𝜎2𝑖 ). In the output layer, the
probability of membership for all experts E 𝑗 ∈ E is finally calcu-
lated based on Eq. 5 and Eq. 6 and the team members e ⊆ E are
those experts who have the top-𝑘 highest probabilities.

3 EXPERIMENTS
3.1 Setup
3.1.1 Dataset. As suggested in [7], we choose DBLP as the bench-
mark. We consider each author to represent an expert and the
authors of each publication to form a team. We form the skill set
S from the set of keywords extracted from the title of the pub-
lications as suggested by [7, 14]. Having applied preprocessings
such as stemming and stop word elimination, the top-2,000 {1,2,3}-
gram keywords with the highest tf-idf scores form the skill set. In
summary, |T | = 33, 002 teams over |S| = 2, 000 skills (keywords)
and |E | = 2, 470 experts (authors) are included in our gold stan-
dard dataset whose overall distribution by the number of skills and
experts is shown in Fig. 2.
3.1.2 Evaluation Strategy. To evaluate the effectiveness of our
model for identifying expert teams, we performed 10-fold cross
validation where publications of each author were randomly dis-
tributed across different folds. Having trained the mapping function
𝑓 : P(S) → P(E) on teams in the training folds, we compare the
predicted team 𝑓 (s;𝜽 ) = e′ with the observed team e in (s, e) from
the test fold. We report the average performance using i) ranking
metrics: mean average precision (map), mean reciprocal rank (mrr),
normalized discounted cumulative gain (ndcg), and recall for the
top-𝑘 experts of highest probabilities in the ranked list of predic-
tions. Further, we measure the scalability of our proposed model
compared to the baselines. We report the execution time of the
methods when using same computing power with 12 cpu cores,
64gb memory, and a gpu unit of 3,584 cores and 11gb memory.
3.1.3 Baselines. We evaluate our model vs. the following baselines:
Graph-based. Zihayat et al. [14]’s work is among the latest
based on graph search techniques. Therein, each team is represented

Figure 3: The effect of vector representation.
as a spanning subtree in the expert network and optimization is per-
formed by minimizing the sum of distances among team members.
We also select the pioneering work by Lappas et al. [7] where
teams are subtrees with the minimum diameter (largest shortest
path between any two nodes).
Collaborative filtering. The problem of team formation can be
viewed as a recommendation task where team members are rec-
ommended by a given set of required skills. We adopt recurrent
recommender network (rrn) by Wu et al. [13], which is a neural
collaborative filtering approach as well as svd++ [6], a well-known
matrix factorization method for recommendation. We performed
grid search over bin and factor sizes in {10, 20, ..., 100} to select the
best settings and other hyperparameters were set to default.
Neural-based. The only other neural-based method for the prob-
lem of team formation is by Sapienza et al. [11]; an autoencoder
of one hidden layer of size 1024 to learn the adjacency matrix rep-
resenting the experts directed network. The rrn [13] method can
also be considered as a baseline in this category.
Proposed model (vBnn). Our proposed model is a variational
Baysian neural network (vBnn) with the hidden layer of size𝑑 = 100,
relu and sigmoid are the activation functions for the hidden layer
(𝜋1) and the output layer 𝜋2, respectively. The top-𝑘 experts with
highest probabilities would form the predicted team given the input
skills. Optimization was performed using Adam and learning rate
𝜂 = 0.001. Regarding the vector representations for input skills
and output experts, i.e., vS (s) and vE (e), we have studied both
occurrence vector representation (𝑜) and pretrained dense vector
representation (𝑝) (see §2.3), which results in four different varia-
tions. We denote S𝑜 , S𝑝 , E𝑜 , and E𝑝 when referring to them.

3.2 Results
Effectiveness.We analyze the effect of vector representation on
our proposed vBnn and report the performance of the four varia-
tions in Fig. 3. The overall trend indicates that the performance of
the proposed model for all its variations increases with the number
of predicted experts to form a team in terms of all ranking metrics.
Specifically, the (S𝑝 → E𝑜 ) variation is the best variation where
skills are represented by dense pretrained vectors in the input layer,
i.e., S𝑝 , and experts are represented as occurrence vector to form a
team in the output layer, i.e., E𝑜 . While the same trend is observed
up to top-100 experts, we only report up to top-10, which is the
maximum number of experts in a team in our dataset.

Next, we compare the best variation of our proposed model
against the baselines at their best settings in Fig. 4. vBnn consistently
outperforms all the other baselines in terms of all ranking metrics.
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Figure 4: The performance of our model vs. baselines.

Figure 5: Pairwise help/hurt of vBnn vs. other neural baselines.

Amongst baselines, neural-based methods, i.e., Sapienza et al.
and rrn are the runner-up and graph-based methods are generally
far less effective. We attribute the poor accuracy of graph-based
methods, including their state of the art, i.e., Zihayat et al., to the
fact that they only consider limited subgraphs of the expert network
due to the high computational expense of finding all-pairs shortest
paths on the expert network. On the other hand, the neural-based
methods, including our model, take all past collaboration history
into account. vBnn further introduces uncertainty in its weights
to avoid overfitting to sparse training set where for majority of
experts there are very few teams; an impact that is overlooked in
other neural-based method.

To explore how the uncertainty of neurons affected our proposed
model, we visualized the average ndcg improvement/degrading for
predicting top-{1:10} experts in each team in Fig. 5. vBnn is the most
successful in skewing the diagram to the left; showing consistent
improvement for a higher number of teams of experts compared to
Sapienza et al. and rrn.
Efficiency. We report the empirical efficiency of our model in
comparison with other baselines for the inference phase, i.e., how
efficient an already trained model is at the time of predicting ex-
perts for an unseen team given a set of input skills. Fig. 6 shows
the models’ inference elapsed time for the increasing number of
input skills and output experts. Overall, the execution time for the
graph-based methods is consistently slower than other methods.
Also, contrary to the graph-based methods whose execution time
increases with the number of input skills, neural-based models
maintain steady execution time in all cases, as the graph-based
methods start a new partial/full search over the entire experts net-
work to find the optimized subgraph as the final output team. To
the contrary, neural models have already learned the optimized
distributions of teams over skills and experts in the training phase;
thus, in the inference phase, their execution time depends merely
on the complexity of their architecture (i.e., the size and number
of layers), which is computationally much less taxing compared to
the size and order of the experts network.

In Fig. 7, we investigate which neural model achieves reasonable
inference accuracy more quickly (with less training time). In terms

Figure 6: The inference time.

Figure 7: The inference performance vs. training time.

of average map and ndcg for the top-{1:10} predicted experts in a
team for a set of input skills, vBnn outperforms other neural-based
competitors with much less training time which shows that our
method is more robust to over-fitting and can quickly learn from
sparse data.

4 CONCLUDING REMARKS
We focused on the problem of team formation within expert net-
works by satisfying two main constraints, namely maximal cover-
age of a set of required skills and existing collaboration history be-
tween themembers of the team.We proposed a variational Bayesian
neural network architecture for group formation that is more ef-
fective than prior state of the art. We compared the performance
of the various variations of our proposed model against each other
as well as several categories of baselines and discussed how our
method is able to outperform them. As future work, we plan to
generalize our approach to support for role-based membership of
experts in a team given a set of input skills and associated roles.
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